Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.

Identifieur interne : 003961 ( Main/Exploration ); précédent : 003960; suivant : 003962

Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.

Auteurs : Elizabeth R. Waters [États-Unis] ; Brian D. Aevermann ; Zipporah Sanders-Reed

Source :

RBID : pubmed:18759000

Descripteurs français

English descriptors

Abstract

The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not possess the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity.

DOI: 10.1007/s12192-008-0023-7
PubMed: 18759000
PubMed Central: PMC2673885


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.</title>
<author>
<name sortKey="Waters, Elizabeth R" sort="Waters, Elizabeth R" uniqKey="Waters E" first="Elizabeth R" last="Waters">Elizabeth R. Waters</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA. ewaters@sciences.sdsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aevermann, Brian D" sort="Aevermann, Brian D" uniqKey="Aevermann B" first="Brian D" last="Aevermann">Brian D. Aevermann</name>
</author>
<author>
<name sortKey="Sanders Reed, Zipporah" sort="Sanders Reed, Zipporah" uniqKey="Sanders Reed Z" first="Zipporah" last="Sanders-Reed">Zipporah Sanders-Reed</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18759000</idno>
<idno type="pmid">18759000</idno>
<idno type="doi">10.1007/s12192-008-0023-7</idno>
<idno type="pmc">PMC2673885</idno>
<idno type="wicri:Area/Main/Corpus">003805</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003805</idno>
<idno type="wicri:Area/Main/Curation">003805</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003805</idno>
<idno type="wicri:Area/Main/Exploration">003805</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.</title>
<author>
<name sortKey="Waters, Elizabeth R" sort="Waters, Elizabeth R" uniqKey="Waters E" first="Elizabeth R" last="Waters">Elizabeth R. Waters</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA. ewaters@sciences.sdsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aevermann, Brian D" sort="Aevermann, Brian D" uniqKey="Aevermann B" first="Brian D" last="Aevermann">Brian D. Aevermann</name>
</author>
<author>
<name sortKey="Sanders Reed, Zipporah" sort="Sanders Reed, Zipporah" uniqKey="Sanders Reed Z" first="Zipporah" last="Sanders-Reed">Zipporah Sanders-Reed</name>
</author>
</analytic>
<series>
<title level="j">Cell stress & chaperones</title>
<idno type="eISSN">1466-1268</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (classification)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Conversion (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Heat-Shock Proteins (classification)</term>
<term>Heat-Shock Proteins (genetics)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (blood)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Subcellular Fractions (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Conversion des gènes (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Fractions subcellulaires (composition chimique)</term>
<term>Génome végétal (MeSH)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (génétique)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines d'Arabidopsis (classification)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines du choc thermique (classification)</term>
<term>Protéines du choc thermique (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (sang)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Fractions subcellulaires</term>
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Heat-Shock Proteins</term>
<term>Magnoliopsida</term>
<term>Oryza</term>
<term>Plant Proteins</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Magnoliopsida</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines du choc thermique</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
<term>Protéines du choc thermique</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Conversion</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Conversion des gènes</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité d'espèce</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not possess the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18759000</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1466-1268</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Season>Summer</Season>
</PubDate>
</JournalIssue>
<Title>Cell stress & chaperones</Title>
<ISOAbbreviation>Cell Stress Chaperones</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.</ArticleTitle>
<Pagination>
<MedlinePgn>127-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12192-008-0023-7</ELocationID>
<Abstract>
<AbstractText>The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not possess the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Waters</LastName>
<ForeName>Elizabeth R</ForeName>
<Initials>ER</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA. ewaters@sciences.sdsu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aevermann</LastName>
<ForeName>Brian D</ForeName>
<Initials>BD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sanders-Reed</LastName>
<ForeName>Zipporah</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>02</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Cell Stress Chaperones</MedlineTA>
<NlmUniqueID>9610925</NlmUniqueID>
<ISSNLinking>1355-8145</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005785" MajorTopicYN="N">Gene Conversion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18759000</ArticleId>
<ArticleId IdType="doi">10.1007/s12192-008-0023-7</ArticleId>
<ArticleId IdType="pmc">PMC2673885</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 1995 Mar;40(3):238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Feb;64(3):294-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17187175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Dec;22(12):2444-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16120808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):182-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(2):R13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1988 Mar;7(3):575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3396532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 May 5;270(18):10432-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Aug;105(4):1255-1261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Mar;66(1):64-93; table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Jan;16(1):127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1738-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2003 Dec;29(3):456-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2007 Aug;65(2):162-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 May;170(1):433-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12984-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14566062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 May;9(5):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Oct 15;343(2):445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15451672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:447</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2006 Mar;62(3):257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16474980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4454-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1994 Jan;38(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8151709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2004;38:615-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15568988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Dec;8(12):1025-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11702068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2004 Oct;53(5):793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8791-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Oct;12(10):842-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16205709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 1998 May-Jun;22(3-4):151-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9650070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Nov;56(5):795-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15803416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3009-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 2001;59:105-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11868270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9388-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12886019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jan;154(1):459-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):39943-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17090542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1995 Nov;12(6):1063-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2003 Oct;57(4):408-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14708574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Dec;59(6):792-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15599511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Sep;19(9):1464-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2003 Winter;8(4):381-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15115290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):367; author reply 367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2004 Jun;5(2):150-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2002 Jul;55(1):14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Oct;141(2):785-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Feb 3;16(3):659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9034347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Nov;62(21):2460-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2001 Jul;6(3):225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11599564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2006 Jan;119(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jan;122(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):47-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531488</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Aevermann, Brian D" sort="Aevermann, Brian D" uniqKey="Aevermann B" first="Brian D" last="Aevermann">Brian D. Aevermann</name>
<name sortKey="Sanders Reed, Zipporah" sort="Sanders Reed, Zipporah" uniqKey="Sanders Reed Z" first="Zipporah" last="Sanders-Reed">Zipporah Sanders-Reed</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Waters, Elizabeth R" sort="Waters, Elizabeth R" uniqKey="Waters E" first="Elizabeth R" last="Waters">Elizabeth R. Waters</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003961 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003961 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18759000
   |texte=   Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18759000" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020